We present the draft genome sequence of *Pseudomonas stutzeri* TS44, a moderately halotolerant, arsenite-oxidizing bacterium isolated from arsenic-contaminated soil. The genome encodes genes for arsenite oxidation, arsenic resistance, and ectoine/hydroxyectoine biosynthesis. The genome information will be useful for exploring adaptation of *P. stutzeri* TS44 to an arsenic-contaminated environment.

P. stutzeri is a Gram-negative, rod-shaped, motile, and nonfluorescent denitrifying bacterium that exhibits metabolic diversity and is widely distributed in the environment (8). Currently, five genome sequences for *P. stutzeri* members have been published, including two nitrogen-fixing bacteria (*P. stutzeri* A1501, CP000304 [19] and *P. stutzeri* DSM4166, CP002622 [20]), a typical lactate utilization bacterium (*P. stutzeri* SDM-LAC, AGSX00000000 [6]), a type strain (*P. stutzeri* CGMCC 1.1803, CP002881 [4]), and a model organism for denitrification (*P. stutzeri* CCUG 16156, AGSL00000000 [15]). *P. stutzeri* TS44 was isolated from a highly arsenic-contaminated soil of a metal (gold, copper, and iron) mine in Huangshi, China (2). This strain is responsible for resistance to other metals (copper, mercury, chromium, cadmium, and zinc) were also identified.

The whole-genome sequence of strain TS44, sequenced by using a Roche 454 GS-FLX apparatus (12) and assembled using the Roche Newbler assembler, includes 4,278,818 bp distributed in 78 contigs, with a depth of 27-fold coverage and an average GC content of 64.4%. In addition, the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html) was used for annotation. The automatic outputs were modified manually.

The genome contains at least 20 genes encoding functions related to arsenite oxidation and resistance, mainly located on contig 00030 (AJXE01000030; *ars* operon, *arsC1-arsR-arsC2-ACR3-arsH-DSP-GAPDH-MFS*), an adjacent *aroA* operon, and contig 00031 (AJXE01000031; *ars* operon, *ACR3-arsR-arsH-GAPDH-MFS*). Notably, *aiaAB* (encoding arsenic oxidase) was absent in the other five *P. stutzeri* genomes, suggesting recent acquisition of *aiaAB* by strain TS44 via horizontal gene transfer. However, a two-component system, *aioS/aioR*, involved in regulating the expression of *aiaAB*, was not identified in the genome, indicating a potentially novel regulatory mechanism (10, 14). In addition, numerous genes responsible for resistance to other metals (copper, mercury, chromium, cadmium, and zinc) were also identified.

Genomic comparison demonstrated that all six sequenced *P. stutzeri* strains possess a complete cluster of ectoine/hydroxyectoine biosynthetic genes (*ectABCD-ask*) (16, 17). However, this entire *ectABCD-ask* cluster was not identified in the genomes of other *Pseudomonas* species (7). Compared to other *Pseudomonas* species, ectoine/hydroxyectoine biosynthesis is presumably a common strategy for *P. stutzeri* to survive under high-osmolarity conditions.

Nucleotide sequence accession numbers. The results of this genome shotgun project have been deposited with DDBJ/EMBL/GenBank under the accession number AJXE00000000. The version described in this paper is the first version, AJXE01000000.

ACKNOWLEDGMENTS.

This work was supported by grants from the National Natural Science Foundation of China (no. 30970075) and a Major International Collaborative Project of National Natural Science Foundation of China (no. 31010103903).

Sequencing was performed at the University of Arizona Genetics Core.

REFERENCES

Received 24 May 2012 Accepted 5 June 2012

Address correspondence to Gejiao Wang, gejiaow@yahoo.com.cn.

* Present address: Lin Cai, Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JB.00907-12

AUTHOR PLEASE ANSWER ALL QUERIES

AQau—Please confirm the given-names and surnames are identified properly by the colors.
 = Given-Name, = Surname

AQref—Please note that per ASM’s new reference style, references with 6 or more authors in the author line will be abbreviated to include just the first author plus “et al.” in the published article; however, for reviewing purposes, authors should continue to submit articles with references including all author names (do not use “et al.”). If the article is accepted, the changes to the byline will be made automatically during file conversion.

AQA—AU/References 1–5 have been renumbered (realphabetization of original reference #1, based on surname); please check renumbering throughout text.