Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus *Flavobacterium* and *Flavobacterium cauense*, *Flavobacterium saliperosum* and *Flavobacterium suncheonense*

Kun Dong, Fang Chen, Yan Du and Gejiao Wang

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China

A Gram-negative, strictly aerobic, yellow-pigmented rod, designated DK69^T, was isolated from soil collected from the waste liquid treatment facility of Bafeng Pharmaceutical Company in the city of Enshi, Hubei Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain DK69^T in the genus *Flavobacterium* of the family *Flavobacteriaceae*. The highest 16S rRNA gene sequence similarities were found with *Flavobacterium cauense* R2A-7^T (96.9%), *Flavobacterium saliperosum* AS 1.3801^T (96.3%) and *Flavobacterium suncheonense* GH29-5^T (95.7%). The major fatty acids (≥ 5%) were iso-C₁₅:₀-₃-OH, iso-C₁₇:₁ω₉c, C₁₅:₀, iso-C₁₇:₀-3-OH and iso-C₁₅:₀-3-OH. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid. The major respiratory quinone was menaquinone-6. The genomic DNA G+C content was 34.4 mol%. Strain DK69^T represents a novel species of the genus *Flavobacterium*, for which the name *Flavobacterium enshiense* sp. nov. is proposed. The type strain is DK69^T (=CCTCC AB 2011144^T =KCTC 23775^T). Emended descriptions of the genus *Flavobacterium* and *Flavobacterium cauense*, *Flavobacterium saliperosum* and *Flavobacterium suncheonense* are also proposed.

The genus *Flavobacterium*, currently consisting of over 60 species, belongs to the family *Flavobacteriaceae*, phylum *Bacteroidetes*. It was first proposed by Bergey et al. (1923) and an extensively emended description of the genus was given by Bernardet et al. (1996). Members of the genus have been found in a wide range of habitats, such as soil (Kim et al., 2006; Yoon et al., 2006, 2007; Weon et al., 2007; Yang et al., 2011), sediment, fresh water, seawater, diseased fish, glaciers and micromats (Bernardet & Bowman, 2011). The genus accommodates Gram-negative, aerobic, non-spore-forming, yellow-pigmented rods that have menaquinone-6 (MK-6) as the major respiratory quinone and are non-motile or motile by gliding. Members of the genus have a DNA G+C content in the range of 30–41 mol% (Bernardet & Bowman, 2011; Xu et al., 2011), except for *Flavobacterium caeni* (52 mol%) (Liu et al., 2010). Most members contain iso-C₁₅:₀-3₀ as the major fatty acid. Polar lipids have been analysed in only a few members of the genus; so far, phosphatidylethanolamine is the common major polar lipid (Park et al., 2006, 2007; Ryu et al., 2007, 2008; Sheu et al., 2011).

Soil was collected from the waste liquid treatment facility of Bafeng Pharmaceutical Company (29° 52′ 55.14″ N 110° 03′ 21.41″ E) in the city of Enshi, Hubei province, China. The pH of the soil was 6.97, and the total C, N, P, S and Fe concentrations were 39.83, 3.34, 0.68, 0.36, 33.80 g kg^{−1}, respectively (determined by atomic absorption spectroscopy). For isolation, serially diluted soil samples were spread on R2A agar (Difco) and incubated at 28°C for 7 days. A single colony, designated DK69^T, was picked and subcultivated. The isolate was routinely cultivated 28°C for 2 days on R2A agar and preserved at −80°C in R2A broth supplemented with 25% (v/v) glycerol.

A nearly complete (1477 bp) 16S rRNA gene sequence of strain DK69^T was amplified as described by Fan et al. (2008) and compared with sequences available in public databases using BLASTN. The similarities were calculated using the EzTaxon server (Chun et al., 2007). Using CLUSTAL X (Thompson et al., 1997), the 16S rRNA gene sequence of strain DK69^T was aligned with those of type strains of 20 members of the genus *Flavobacterium* and another member of family *Flavobacteriaceae*, *Leeuwenhoekia marinoflava* ATCC 19326^T, which was used as an outgroup. Neighbour-joining (Saitou & Nei, 1987) and maximum-parsimony (Fitch, 1971) trees were constructed using MEGA 4.0 (Tamura...
et al., 2007) and a maximum-likelihood tree was generated using the PHYML online web server (Guindon et al., 2005). Bootstrap values were calculated based on 1000 replications (Felsenstein, 1985) in order to evaluate the confidence levels of the nodes. In the neighbour-joining phylogenetic tree (Fig. 1), strain DK69T was clearly affiliated with the genus Flavobacterium, and formed a separate lineage supported by a high bootstrap value with F. cauense R2A-7T (Qu et al., 2009; 96.9\% 16S rRNA gene sequence similarity), F. saliperosum AS 1.3801T (Wang et al., 2006; 96.3\%), and F. suncheonense GH29-5T (Kim et al., 2006; 95.7\%). Hence, the type strains of these species were obtained and used as references in this study. The 16S rRNA gene sequence similarity between strain DK69T and the type species, F. aquatile ATCC 11947T, was 93.4\%.

For the analyses of morphological, physiological and biochemical characteristics, strain DK69T, F. cauense CGMCC 1.7270T and F. suncheonense DSM 17707T were grown on R2A agar or in R2A broth at 28 °C for 2 days unless otherwise mentioned, and F. saliperosum CGMCC 1.3801T was grown on modified M1 agar or in modified M1 broth as described by Wang et al. (2006). Cell morphology was observed using a transmission electron microscope (Hitachi 7650) as described by Nedashkovskaya et al. (2005). Gram-staining was tested as described by Dussault (1955) and with the KOH lysis method (Ryu, 1938). Flagellar motility was assessed in 0.3 % R2A agar or modified M1 using stab inoculation while gliding motility was assessed using the hanging-drop technique according to Bernardet et al. (2002). Growth at 0, 4, 15, 20, 28, 32, 37 and 42 °C, with 0–5 % (w/v) NaCl (at intervals of 1 %) and at pH 4–10 (at intervals of one pH unit) was tested in R2A or modified M1 broth.
M1 broth for 1 week. For the pH tests, the broth was adjusted to the initial pH value with citrate/phosphate or Tris/hydrochloride buffers (Breznak & Costillow, 1994). Anaerobic growth was evaluated by incubation in an anaerobic chamber (Mitsubishi Gas Chemical) (<1 % O₂, ≥16 % CO₂ and N₂) for 2 weeks. Growth was tested on nutrient agar (NA), full-strength trypticase soy agar (TSA), R2A agar and LB agar (all from Difco). Catalase activity was determined by assessing bubble production from 3 % (v/v) H₂O₂, and oxidase activity was determined using 1 % (w/v) tetramethyl-β-phenylenediamine (Merck). Indole production and hydrolysis of casein, ascesulin, gelatin, L-tyrosine, urea, starch, Tween 80, DNA and CM-cellulose was investigated according to Smibert & Krieg (1994) and Reichenbach (1992). Nitrate reduction, glucose oxidation/fermentation and H₂S production were investigated according to the methods of Dong & Cai (2001). The production of a precipitate on egg yolk agar was tested on R2A agar supplemented with 10 % egg yolk emulsion (17148; Sigma). Congo red adsorption and the production of flexirubin-type pigments were assessed according to Bernardet et al. (2002). Acid production from various carbohydrates was determined as described by Hugh & Leifson (1953). Antibiotic susceptibility tests were performed by the disc diffusion method (Hangzhou Microbial Reagent) on R2A agar at 28 °C for 2 days. Strains were considered susceptible when the diameter of the inhibition zone was ≥10 mm (Jorgensen & Ferraro, 2009). Other physiological/biochemical properties, enzyme activities and single carbon substrate utilization were examined at 28 °C using the API 20 NE, API ZYM and API ID 32GN systems (bioMérieux), according to the manufacturer’s instructions except that the API ZYM strips were observed after 6 h and the API 20 NE and API ID 32GN strips after 48 h. The phenotypic characteristics of strain DK69ᵀ are given in Table 1 and the species description.

Strain DK69ᵀ could be distinguished from its closest relatives by growth on NA and LB agar, NaCl concentration for growth and N-acetyl-β-glucosaminidase activity (Table 1).

The DNA G+C content of strain DK69ᵀ was determined by HPLC as described by Mesbah et al. (1989). For whole-cell fatty acid analysis, strain DK69ᵀ and the reference strains were grown in R2A or modified M1 broth at 28 °C until they reached the mid-exponential phase and were analysed by GC (model 6890; Hewlett Packard) according to the instructions of the Sherlock Microbial Identification System (version 4.5, database TSBA40 4.10; MIDI) (Kroppenstedt, 1985; Sasser, 1990). The respiratory quinones of strain DK69ᵀ were extracted and identified by HPLC as described by Xie & Yokota (2003) using methyl alcohol/isopropyl alcohol (2:1, v/v) as the solvent and a flow rate of 1.0 ml min⁻¹. The polar lipids of strain DK69ᵀ and the reference strains were analysed by two-dimensional TLC as described by Tindall (1990) and Ventosa et al. (1993).

The DNA G+C content of strain DK69ᵀ was 34.4 mol%, a value within the range reported for the genus Flavobacterium (Bernardet & Bowman, 2011). The major fatty acids (≥5 %) were iso-C₁₅:₀ (38.1 %), iso-C₁₇:₁ω₉c (18.5 %), C₁₅:₀ (10.0 %), iso-C₁₇:₀ 3-OH (8.4 %) and iso-C₁₅:₀ 3-OH (5.3 %). The overall fatty acid composition of strain DK69ᵀ was similar to those of its closest relatives with only minor differences in the respective proportions (Table 2). The predominant respiratory quinone of strain DK69ᵀ was MK-6, which is in line with all members of the family Flavobacteriaceae (Bernardet et al., 2002). Strain DK69ᵀ and the reference strains all contained phosphatidylethanolamine as the major polar lipid. In addition, several aminolipids, aminophospholipids and unidentified lipids were present in all strains, but strain DK69ᵀ contained one unidentified lipid and one aminophospholipid that were not detected in the reference strains (Fig. 2).

On the basis of phylogenetic inference and distinctive phenotypic features, it is concluded that strain DK69ᵀ is new species of the genus Flavobacterium.
Table 2. Fatty acid compositions of strain DK69T and the type strains of closely related members of the genus Flavobacterium

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso-C\textsubscript{15:0}</td>
<td>1.0</td>
<td>1.4</td>
<td>–</td>
<td>1.4</td>
</tr>
<tr>
<td>iso-C\textsubscript{14:0}</td>
<td>tr</td>
<td>–</td>
<td>tr</td>
<td>1.2</td>
</tr>
<tr>
<td>Unknown 13.565*</td>
<td>1.6</td>
<td>2.5</td>
<td>3.5</td>
<td>1.3</td>
</tr>
<tr>
<td>C\textsubscript{15:0}</td>
<td>10.0</td>
<td>3.8</td>
<td>6.3</td>
<td>5.4</td>
</tr>
<tr>
<td>C\textsubscript{15:0} 3-OH</td>
<td>–</td>
<td>tr</td>
<td>1.0</td>
<td>–</td>
</tr>
<tr>
<td>anteiso-C\textsubscript{15:0}</td>
<td>1.8</td>
<td>tr</td>
<td>2.4</td>
<td>3.9</td>
</tr>
<tr>
<td>iso-C\textsubscript{15:0}</td>
<td>38.1</td>
<td>37.9</td>
<td>27.7</td>
<td>29.2</td>
</tr>
<tr>
<td>iso-C\textsubscript{15:0} 3-OH</td>
<td>5.3</td>
<td>12.2</td>
<td>6.2</td>
<td>7.2</td>
</tr>
<tr>
<td>iso-C\textsubscript{15:1} G</td>
<td>1.9</td>
<td>5.5</td>
<td>6.4</td>
<td>3.8</td>
</tr>
<tr>
<td>iso-C\textsubscript{16:0}</td>
<td>3.0</td>
<td>tr</td>
<td>4.6</td>
<td>5.7</td>
</tr>
<tr>
<td>iso-C\textsubscript{16:0} 3-OH</td>
<td>tr</td>
<td>tr</td>
<td>1.8</td>
<td>1.5</td>
</tr>
<tr>
<td>iso-C\textsubscript{17:0} 3-OH</td>
<td>8.5</td>
<td>16.6</td>
<td>12.7</td>
<td>13.0</td>
</tr>
<tr>
<td>iso-C\textsubscript{17:1} \textsubscript{9c}</td>
<td>18.5</td>
<td>12.1</td>
<td>16.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Summed feature 3\dagger</td>
<td>2.6</td>
<td>1.5</td>
<td>1.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

*Unknown fatty acids are designated by their equivalent chain-length.
\dagger Summed features represent two or three fatty acids that cannot be separated by the Microbial Identification System. Summed feature 3 consisted of C\textsubscript{16:0} 7c and/or C\textsubscript{16:1} 9c.

represents a novel species of the genus Flavobacterium, for which the name Flavobacterium enshiense sp. nov. is proposed. On the basis of new data obtained in this study, emended descriptions of the genus Flavobacterium and Flavobacterium cauense, F. saliperosum and F. suncheonense are also proposed.

Emended description of the genus Flavobacterium (Bergey et al. 1923, emend. Bernardet et al. 1996)
The description is as given by Bernardet et al. (1996) with the following amendments. Most strains are positive for catalase. The major polar lipid is phosphatidylethanolamine.

Emended description of Flavobacterium cauense (Qu et al. 2009)
The description is as given by Qu et al. (2009) with the following amendments. Colonies on R2A agar are yellowish orange. Growth occurs on R2A agar, TSA, NA and LB agar. Aesculin is not hydrolysed. None of the substrates in the API 20 NE and API ID 32GN strips is assimilated. In the API ZYM strip, alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, \(\alpha\)-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase and \(N\)-acyetyl-\(\beta\)-glucosaminidase activities are positive, but lipase (C14), \(\alpha\)-galactosidase, \(\beta\)-galactosidase, \(\beta\)-glucuronidase, \(\alpha\)-glucosidase, \(\alpha\)-mannosidase and \(\alpha\)-fucosidase activities are negative. The major polar lipids are phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid; two other unidentified lipids and one aminophospholipid are also present.

Emended description of Flavobacterium saliperosum (Wang et al. 2006)
The description is as given by Wang et al. (2006) with the following amendments. Colonies on M1 agar are yellowish orange and about 1–2 mm in diameter. Growth occurs on NA, TSA and LB agar, but not on R2A agar. Positive for aesculin hydrolysis and negative for H\(_2\)S production. None of the substrates in the API 20 NE and API ID 32GN strips is assimilated. In the API ZYM strip, alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, \(\alpha\)-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase and \(N\)-acyetyl-\(\beta\)-glucosaminidase activities are positive, but lipase (C14), \(\alpha\)-galactosidase, \(\beta\)-galactosidase, \(\beta\)-glucuronidase, \(\alpha\)-glucosidase, \(\beta\)-glucosidase, \(\alpha\)-mannosidase and \(\alpha\)-fucosidase activities are negative. The major polar lipids are phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid; two other unidentified lipids and one unidentified aminolipid are also present.

Emended description of Flavobacterium suncheonense (Kim et al. 2006)
The description is as given by Kim et al. (2006) with the following amendments. Colonies on R2A agar are about 1–2 mm in diameter. Optimum growth occurs at pH 7.0 and with optimum 0 % NaCl. Growth occurs on R2A agar, TSA, NA and LB agar. Positive for H\(_2\)S production. None of the substrates in the API ID 32GN strips is assimilated. In the API ZYM strip, trypsin is positive. The major polar lipids are phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid; two other unidentified lipids, another unidentified aminolipid and one unidentified aminophospholipid are also present.

Description of Flavobacterium enshiense sp. nov.

Flavobacterium enshiense (en.shi.en’se. N.L. neut. adj. *ensiense* pertaining to the city of Enshi, where the type strain was isolated).

Cells are Gram-negative, non-flagellated, non-motile, strictly aerobic rods, approximately 0.3–0.4 μm wide and 1.1–1.7 μm in length after 48 h of incubation. Colonies grown on R2A agar are circular, bright yellow, smooth with regular edges and about 1 mm in diameter. Growth occurs at 4–32 °C (optimum 28 °C), but not at 37 °C, at pH 6.0–8.0 (optimum pH 7.0) and with 0 % NaCl. Growth occurs on R2A agar and TSA, but not on NA and LB agar.
Oxidase- and catalase-positive. Flexirubin-type pigments are present and Congo red is not absorbed. Anaerobic growth is not observed. Nitrate is not reduced to nitrite. Casein and gelatin are hydrolysed, but aesculin, starch, Tween 80, urea, DNA and CM-cellulose are not. Negative for glucose fermentation and arginine dihydrolase activity. Forms a precipitate on egg yolk agar. Degrades tyrosine but no brown pigment is produced on tyrosine agar. Negative for H₂S and indole production. Acid is produced from sucrose and D-mannitol, but not from L-arabinose, melibiose, maltose, trehalose, D-sorbitol, melezitose, D-fructose, raffinose, D-ribose, D-glucose, glycerol, D-xylose, turanose, cellobiose, adonitol or salicin. None of the substrates in the API 20 NE and API ID 32GN strips is assimilated. In the API ZYM strip, alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, acid phosphatase and naphthol-AS-BI-phosphohydrolase activities are positive, but lipase (C14), α-galactosidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and α-fucosidase activities are negative. Resistant to (μg per disc unless otherwise stated) trimethoprim (5), sulfamethoxazole (75), novobiocin (5), oxofloxacin (5), oxazolin (1) and lincomycin (2), but sensitive to nitrofurantoin (300), teicoplanin (30), cefalotin (30), chloramphenicol (30), rifampicin (5), amoxicillin (10), penicillin (10 U), ampicillin (10), carbenicillin (100), cephalosporin V (30), cephalosporin IV (30), streptomycin (10), tobramycin (10), vancomycin (30), norfloxacin (10), nalidixic acid (30), erythromycin (15), tetracycline (30), neomycin (30), minocin (30), kanamycin (30) and cefoxitin (30). Menaquinone 6 is the major respiratory quinone. The major polar lipids are phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid; two other unidentified lipids and two unidentified aminophospholipids are also present. The predominant fatty acids (> 5 %) are iso-C₁₅ : 0, iso-C₁₇ : 1v9c, C₁₅ : 0, iso-C₁₇ : 0 3-OH and iso-C₁₅ : 0 3-OH.

The type strain is DK69ᵀ (=CCTCC AB 2011144ᵀ =KCTC 23775ᵀ), isolated from soil taken from the waste liquid treatment facility of Bafeng Pharmaceutical Company in the city of Enshi, Hubei Province, China. The DNA G+C content of the type strain is 34.4 mol%.

Acknowledgements
We are grateful to Dr Hongli Yuan (China Agricultural University) for providing F. cauense CGMCC 1.7270ᵀ, Dr Jean Euzéby (École Nationale Vétérinaire, Toulouse, France) for advising on the etymology of the specific epithet, and Dr Wenjun Li and Ms Lingling Yang (Yunnan University) for respiratory quinone and polar lipid analyses. This work was supported by the National Natural Science Foundation of China (31010103903).

References

Dear Authors,

Please find enclosed a proof of your article for checking.

When reading through your proof, please check carefully authors' names, scientific data, data in tables, any mathematics and the accuracy of references. Please do not make any unnecessary changes at this stage. All necessary corrections should be marked on the proof at the place where the correction is to be made; please write the correction clearly in the margin (if in the text they may be overlooked).

Any queries that have arisen during preparation of your paper for publication are listed below and indicated on the proof. Please provide your answers when returning your proof.

Please return your proof by email (ijsem.proofs@sgm.ac.uk) or Fax [+44 (0)118 988 1834] within 2 days of receipt.

<table>
<thead>
<tr>
<th>Query no.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Author: ‘optimum’ has been deleted according to Table 1. OK?</td>
</tr>
<tr>
<td>2</td>
<td>Author: Table 2 gives 8.5%. Please amend either here in the text or in the table</td>
</tr>
<tr>
<td>3</td>
<td>Author: the description has been edited to give only those characters different or not mentioned in Bernardet et al., 1996. OK?</td>
</tr>
<tr>
<td>4</td>
<td>Author: the description has been edited to give only those characters different or not mentioned in Kim et al., 2006. OK?</td>
</tr>
<tr>
<td>5</td>
<td>Author: References. The following references were not cited in the text and have been deleted. Please check that this is correct: "Bernardet, Bowman, 2006"; "Bernardet, Grimont, 1989"; "Dobson, Colwell, McMeekin, Franzmann, 1993"; "Qu, Li, Yang, Yuan, 2008"; "Saha, Chakrabarti, 2006"; "Yi, Chun, 2006"; "Zhu, Wang, Zhou, 2003"</td>
</tr>
</tbody>
</table>
Ordering reprints for SGM journals

As a result of declining reprint orders and feedback from many authors who tell us they have no use for reprints, **SGM no longer provides free reprints to corresponding authors**; instead, corresponding authors will receive two emails:

i) An email including a link to download the published PDF of their paper. You can forward this link to co-authors or others, and they can also use it to download the published PDF. The link can be used up to 25 times. This email will be sent out at around the time your article is published online.

ii) An email including a link to the SGM Reprint Service. You can forward this email to your co-authors if you wish, so that they can order their own reprints directly, or to your finance or purchasing department, if orders are placed centrally. This email will be sent out at around the time that your article is finalized for printing.

When you click on the link in this second email, you will be taken to an order page to place your reprint order. Like most online ordering sites, it is necessary to set up an account and provide a delivery address while placing your order, if you do not already have an account. Once an account and delivery address have been set up, these details will be stored by the system for use with future orders. Payments can be made by credit card, PayPal or purchase order.

As reprint orders are despatched by courier, there is a charge for postage and packing.

SUMMARY

- You can create or update your reprint account at any time at http://sgm-reprints.charlesworth.com/
- You will be sent an email when the reprints of this paper are ready for ordering
- **You cannot order reprints of this paper before this email has been sent**, as your paper will not be in the system
- Reprints can be ordered at any time after publication
- You will also receive an email with a link to download the PDF of your published paper

The reprint ordering details will be emailed to the author listed as the corresponding author on the journal’s manuscript submission system. If your paper has been published (the final version, not the publish-ahead-of-print version) but you have not received this notification, email reprints@sgm.ac.uk quoting the journal, paper number and publication details.

If you have any questions or comments about the reprint-ordering system or about the link to your published paper, email reprints@sgm.ac.uk